Gene-Edited Human Kidney Organoids Reveal Mechanisms of Disease in Podocyte Development.

نویسندگان

  • Yong Kyun Kim
  • Ido Refaeli
  • Craig R Brooks
  • Peifeng Jing
  • Ramila E Gulieva
  • Michael R Hughes
  • Nelly M Cruz
  • Yannan Liu
  • Angela J Churchill
  • Yuliang Wang
  • Hongxia Fu
  • Jeffrey W Pippin
  • Lih Y Lin
  • Stuart J Shankland
  • A Wayne Vogl
  • Kelly M McNagny
  • Benjamin S Freedman
چکیده

A critical event during kidney organogenesis is the differentiation of podocytes, specialized epithelial cells that filter blood plasma to form urine. Podocytes derived from human pluripotent stem cells (hPSC-podocytes) have recently been generated in nephron-like kidney organoids, but the developmental stage of these cells and their capacity to reveal disease mechanisms remains unclear. Here, we show that hPSC-podocytes phenocopy mammalian podocytes at the capillary loop stage (CLS), recapitulating key features of ultrastructure, gene expression, and mutant phenotype. hPSC-podocytes in vitro progressively establish junction-rich basal membranes (nephrin+ podocin+ ZO-1+ ) and microvillus-rich apical membranes (podocalyxin+ ), similar to CLS podocytes in vivo. Ultrastructural, biophysical, and transcriptomic analysis of podocalyxin-knockout hPSCs and derived podocytes, generated using CRISPR/Cas9, reveals defects in the assembly of microvilli and lateral spaces between developing podocytes, resulting in failed junctional migration. These defects are phenocopied in CLS glomeruli of podocalyxin-deficient mice, which cannot produce urine, thereby demonstrating that podocalyxin has a conserved and essential role in mammalian podocyte maturation. Defining the maturity of hPSC-podocytes and their capacity to reveal and recapitulate pathophysiological mechanisms establishes a powerful framework for studying human kidney disease and regeneration. Stem Cells 2017;35:2366-2378.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-5: Multicellular Human Testicular Organoid: A Novel 3D In Vitro Germ Cell and Testicular Toxicity Model

Background Background: Mammalian spermatogenesis is regulated through paracrine and endocrine activity, specific cell signaling, and local control mechanisms. These highly specific signaling interactions are effectively absent upon placing testicular cells into two-dimensional primary culture. The specific changes that occur between key cell types and involved spermatogenesis signaling pathways...

متن کامل

Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids

Human-pluripotent-stem-cell-derived kidney cells (hPSC-KCs) have important potential for disease modelling and regeneration. Whether the hPSC-KCs can reconstitute tissue-specific phenotypes is currently unknown. Here we show that hPSC-KCs self-organize into kidney organoids that functionally recapitulate tissue-specific epithelial physiology, including disease phenotypes after genome editing. I...

متن کامل

Prospects for Precision Medicine in Glomerulonephritis Treatment

Background Glomerulonephritis (GN) consists of a group of kidney diseases that are categorized based on shared histopathological features. The current classifications for GN make it difficult to distinguish the individual variability in presentation, disease progression, and response to treatment. GN is a significant cause of end-stage renal disease (ESRD), and improved therapies are desperatel...

متن کامل

STAG ES OF DEVELOPMENT OF RENAL GLOMERULI IN THE NEWBORN RAT KIDNEY

Glomerular development of the kidney was studied in newborn rats by electron microscopy. Four different stages of glomerular development were defined: vesicle fonnation, S-shaped body stage, capillary loop fonnation, and glomerular maturation. In the fust stage, the mesenchymal cells form a spheroid mass. This is followed by the S-shaped body stage in which clefts appear in the mass. Afte...

متن کامل

Activation of podocyte Notch mediates early Wt1 glomerulopathy.

The Wilms' tumor suppressor gene, WT1, encodes a zinc finger protein that regulates podocyte development and is highly expressed in mature podocytes. Mutations in the WT1 gene are associated with the development of renal failure due to the formation of scar tissue within glomeruli, the mechanisms of which are poorly understood. Here, we used a tamoxifen-based CRE-LoxP system to induce deletion ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stem cells

دوره 35 12  شماره 

صفحات  -

تاریخ انتشار 2017